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1 Saddle point integral

Suppose there is a function f : R — R with a global minimum at zy. Suppose also that N is a very large positive number,
and g : R — R is another arbitrary function. Then, we can approximate the integral
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Thus, we have the following theorem:
Theorem 1.1: Saddle point approximation
Consider f,g : R — R such that f has a global maximum at x = xy. Suppose N is a positive number. Then, the

following holds in the large-N limit:
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2 STIRLING’S APPROXIMATION

Example 1.1: A j-function is the limit of narrowing Gaussians

We will use the saddle point approximation to justify the statement that “the limit of narrowing Gaussian functions is a
d-function”. Recall that the § function is defined by the property that, for any function g : R — R,
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Now, consider the Gaussian distribution
e~ (z—x0)/2¢
pe(r —x0) = ——F— - (5)
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As e — 0, pe(x — x9) approaches a narrow function peaked at z¢ but with an integral of 1. For a function g, let’s
calculate the integral

oo 0o 6—(m—x0)/26
| _s@e—antr= [ e—gtw). ()

Now we will use the saddle-point approximation (3) in the ¢ — 0 limit. We find
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Thus, to leading order in €, p.(x — z() approximates d(z — xg).

2 Stirling’s approximation

In this section, we will prove Stirling’s approximation (given without proof in recitation 3) using the saddle point approximation.
For a very large N, we can approximate its factorial using the following:
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The first equality can be seen by integrating by parts N times. In the final equality, we have changed variables from x to
y = Nz. Note, then, that the function
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has a global minimum at y = 1 of f(1) = 1, with f”(1) = 1. Thus, we can use the saddle point approximation (3) to write
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Thus, we have Stirling’s approximation:
Theorem 2.1: Stirling’s approximation
Suppose N is a large integer. Its factorial can be approximated by

InN!'=NInN—-N+O(nN). (11)

One useful, common application of this is for calculating the log of the binomial coefficient:



3 CENTRAL LIMIT THEOREM

Example 2.1: Stirling’s approximation for the binomial coefficient

Suppose N is a very large integer, and n < N is also large. Define x = n/N. Then, we can approximate the binomial
coeflicient by

N
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3 Central limit theorem

(For more context, see recitation 2.) Consider random variables x; which are independent, i.e. p(&) = Hf\il pi(x;), with
characteristic function p(k) = Hivzl pi(k;). Then, cumulants linking different variables are zero, and the cumulants of their
sum X = Zf;l x; reduce to

x; independent = (X" = Z(m”)a . (16)

Suppose the variables x; are, moreover, identically distributed. So, we say they are independent and identically
distributed (iid). Then, we have

x; iid = (X™.=N{(l).. (17)

This generalizes the result we found for the binomial distribution: The mean and variance are both proportional to N.
Consider a new random variable, Y:
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All cumulants of Y scale like NV, and therefore the nth cumulant of Y scales like N/(v/N)® = N'="/2_ In the limit as N — oo,
only the variance remains; all other cumulants approach zero. But the only probability distribution with zero cumulants
above 2 is the normal distribution! We have just proven a weaker version of the central limit theorem:

Theorem 3.1: Central limit theorem
Consider N identically distributed random variables {x;}. Suppose their correlations are weak enough so that
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Then, the probability density of their sum approaches a Gaussian distribution:
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Here’s a toy example. We will show the convergence to a Gaussian both with and without use of the CLT.
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3 CENTRAL LIMIT THEOREM

Example 3.1: Biased coin flips

Let ¢ range from 1 to N. Let x; be a random variable that takes on values {0,1}. Suppose P(0) =1 — ¢q and P(1) = g,
and consider the random variables

N
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; I (21)
e Without using the central limit theorem, we can explicitly calculate the probability measure Px of X. This is
simply
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for integers n € {0,1,..., N}. Now suppose N is very large. Define z = n/N. For n which are O(N), we can use
Example 2.1 to approximate this as

Px(aN) ~ exp [—N(xln (f) +(1—2)hn G_ z)ﬂ =exp [~ Nf,(2)] - (23)
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The function f,(x) has a minimum at zg = ¢, where f(z¢) =0 and f"(z¢) = % + 1%(1. Thus, using the saddle point
approximation (which can be straightforwardly extended to the complex numbers), we may calculate the moment

generating function:
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Thus, the cumulant generating function is
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which is a 2nd-degree polynomial in k. The only such distribution is the Gaussian distribution with mean p = ¢
and variance 02 = ¢(1 — q¢)/N. Thus, X = Nz is a Gaussian with mean N¢ and variance N¢q(1 — q).

e Using the central limit theorem, we can simply use the fact that X is a sum of IV independent random variables,
each with mean ¢ and variance ¢(1 — ¢), to find
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VN V2rNq(1 - q) ~ 2Ng(1-q)

This is the same as the result we found without using the CLT.
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