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1 Saddle point integral

Suppose there is a function f : R → R with a global minimum at x0. Suppose also that N is a very large positive number,
and g : R → R is another arbitrary function. Then, we can approximate the integral∫ ∞

−∞
dxe−Nf(x)g(x) ≈

∫ ∞

−∞
dxe−Nf(x0)−N 1

2 (x−x0)
2f ′′(x0)

[
g(x0) +

1

2
(x− x0)

2g′′(x0) + . . .
]

(1)

= e−Nf(x0)

√
2π

Nf ′′(x0)

[
g(x0) +O(1/N)

]
. (2)

Thus, we have the following theorem:

Theorem 1.1: Saddle point approximation

Consider f, g : R → R such that f has a global maximum at x = x0. Suppose N is a positive number. Then, the
following holds in the large-N limit:∫ ∞

−∞
dxe−Nf(x)g(x) −−−−→

N→∞
e−Nf(x0)

√
2π

Nf ′′(x0)

[
g(x0) +O(1/N)

]
. (3)
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2 STIRLING’S APPROXIMATION

Example 1.1: A δ-function is the limit of narrowing Gaussians

We will use the saddle point approximation to justify the statement that “the limit of narrowing Gaussian functions is a
δ-function”. Recall that the δ function is defined by the property that, for any function g : R → R,∫ ∞

−∞
δ(x− x0)g(x)dx = g(x0) . (4)

Now, consider the Gaussian distribution

ρε(x− x0) =
e−(x−x0)/2ε

√
2πε

. (5)

As ε → 0, ρε(x − x0) approaches a narrow function peaked at x0 but with an integral of 1. For a function g, let’s
calculate the integral ∫ ∞

−∞
g(x)ρε(x− x0)dx =

∫ ∞

−∞

e−(x−x0)/2ε

√
2πε

g(x) . (6)

Now we will use the saddle-point approximation (3) in the ε → 0 limit. We find∫ ∞

−∞
g(x)ρε(x− x0)dx −−−→

ε→0
g(x0) +O(ε) . (7)

Thus, to leading order in ε, ρε(x− x0) approximates δ(x− x0).

2 Stirling’s approximation

In this section, we will prove Stirling’s approximation (given without proof in recitation 3) using the saddle point approximation.
For a very large N , we can approximate its factorial using the following:

N ! =

∫ ∞

0

xNe−xdx =

∫ ∞

0

e−x+N ln xdx = eN lnN

∫ ∞

0

e−N(y−ln y) . (8)

The first equality can be seen by integrating by parts N times. In the final equality, we have changed variables from x to
y = Nx. Note, then, that the function

f(y) ≡ y − ln y (9)

has a global minimum at y = 1 of f(1) = 1, with f ′′(1) = 1. Thus, we can use the saddle point approximation (3) to write

N ! ≈ eN lnN−N

√
2π

N
. (10)

Thus, we have Stirling’s approximation:

Theorem 2.1: Stirling’s approximation

Suppose N is a large integer. Its factorial can be approximated by

lnN ! = N lnN −N +O(lnN) . (11)

One useful, common application of this is for calculating the log of the binomial coefficient:
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3 CENTRAL LIMIT THEOREM

Example 2.1: Stirling’s approximation for the binomial coefficient

Suppose N is a very large integer, and n ≤ N is also large. Define x ≡ n/N . Then, we can approximate the binomial
coefficient by

ln

N

n

 = lnN !− ln(N − n)!− lnn! (12)

≈ N lnN − (N − n) ln(N − n)− n lnn (13)

= N
[
lnN − (1− x)

(
ln(1− x) + lnN

)
− x

(
lnx+ lnN

)]
(14)

= −N
[
x lnx+ (1− x) ln(1− x)

]
. (15)

3 Central limit theorem

(For more context, see recitation 2.) Consider random variables xi which are independent, i.e. ρ(x⃗) =
∏N

i=1 ρi(xi), with

characteristic function ρ̃(k⃗) =
∏N

i=1 ρ̃i(ki). Then, cumulants linking different variables are zero, and the cumulants of their

sum X =
∑N

i=1 xi reduce to

xi independent =⇒ ⟨Xn⟩c =
N∑
i=1

⟨xn
i ⟩c . (16)

Suppose the variables xi are, moreover, identically distributed. So, we say they are independent and identically
distributed (iid). Then, we have

xi iid =⇒ ⟨Xn⟩c = N⟨xn
i ⟩c . (17)

This generalizes the result we found for the binomial distribution: The mean and variance are both proportional to N .
Consider a new random variable, Y :

Y ≡ X − ⟨X⟩c√
N

. (18)

All cumulants of Y scale like N , and therefore the nth cumulant of Y scales like N/(
√
N)n = N1−n/2. In the limit as N → ∞,

only the variance remains; all other cumulants approach zero. But the only probability distribution with zero cumulants
above 2 is the normal distribution! We have just proven a weaker version of the central limit theorem:

Theorem 3.1: Central limit theorem

Consider N identically distributed random variables {xi}. Suppose their correlations are weak enough so that

N∑
i1=1

. . .

N∑
im=1

⟨xi1 ∗ . . . ∗ xim⟩c ≪ O(Nm/2) . (19)

Then, the probability density of their sum approaches a Gaussian distribution:

lim
N→∞

ρ

(
y ≡

∑N
i=1 xi −N⟨x⟩c√

N

)
=

1√
2π⟨x2⟩c

exp

[
− y2

2⟨x2⟩c

]
. (20)

Here’s a toy example. We will show the convergence to a Gaussian both with and without use of the CLT.
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3 CENTRAL LIMIT THEOREM

Example 3.1: Biased coin flips

Let i range from 1 to N . Let xi be a random variable that takes on values {0, 1}. Suppose P (0) = 1− q and P (1) = q,
and consider the random variables

X ≡
N∑
i=1

xi , Y ≡ X − ⟨X⟩c√
N

. (21)

• Without using the central limit theorem, we can explicitly calculate the probability measure PX of X. This is
simply

PX(n) =

N

n

 (1− q)N−nqn =
N !

n!(N − n)!
(1− q)N−nqn (22)

for integers n ∈ {0, 1, . . . , N}. Now suppose N is very large. Define x ≡ n/N . For n which are O(N), we can use
Example 2.1 to approximate this as

PX(xN) ≈ exp

[
−N

(
x ln

(x
q

)
+ (1− x) ln

(1− x

1− q

))]
≡ exp

[
−Nfq(x)

]
. (23)

The function fq(x) has a minimum at x0 = q, where f(x0) = 0 and f ′′(x0) =
1
q + 1

1−q . Thus, using the saddle point

approximation (which can be straightforwardly extended to the complex numbers), we may calculate the moment
generating function:

⟨e−ikx⟩ =
∫ 1

0

dxe−Nfq(x)−ikx ≈
∫ ∞

−∞
dxe−

N
2 (x−q)2−ikx =

√
2π

Nf ′′
q (q)

exp

[
− k2

2Nf ′′
q (q)

− ikq

]
(24)

=

√
2πq(1− q)

N
exp

[
− k2

2

q(1− q)

N
− ikq

]
. (25)

Thus, the cumulant generating function is

ln⟨e−ikx⟩ = −k2

2

q(1− q)

N
− ikq − 1

2
ln

(
2πq(1− q)

N

)
, (26)

which is a 2nd-degree polynomial in k. The only such distribution is the Gaussian distribution with mean µ = q
and variance σ2 = q(1− q)/N . Thus, X = Nx is a Gaussian with mean Nq and variance Nq(1− q).

• Using the central limit theorem, we can simply use the fact that X is a sum of N independent random variables,
each with mean q and variance q(1− q), to find

ρY

(
Y =

X − ⟨X⟩c√
N

)
=

1√
2πq(1− q)

exp

(
− Y 2

2q(1− q)

)
(27)

=⇒ ρX(X) =
1√
N

ρY (Y (X)) =
1√

2πNq(1− q)
exp

(
− (X −Nq)2

2Nq(1− q)

)
. (28)

This is the same as the result we found without using the CLT.
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